Exercise 17

The mass of the part of a metal rod that lies between its left end and a point x meters to the right is $3 x^{2} \mathrm{~kg}$. Find the linear density (see Example 2) when x is (a) 1 m , (b) 2 m , and (c) 3 m . Where is the density the highest? The lowest?

Solution

For a one-dimensional rod, the density is the ratio of mass to length.

$$
\lambda=\frac{\Delta m}{\Delta x}
$$

If the mass varies continuously, then the limit needs to be taken as $\Delta x \rightarrow 0$.

$$
\begin{aligned}
\lambda(x)=\lim _{\Delta x \rightarrow 0} \frac{\Delta m}{\Delta x} & =\frac{d m}{d x} \\
& =\frac{d}{d x}\left(3 x^{2}\right) \\
& =6 x
\end{aligned}
$$

If $x=1 \mathrm{~m}$, then the density (in kilograms per meter) is

$$
\lambda(1)=6(1)=6 .
$$

If $x=2 \mathrm{~m}$, then the density (in kilograms per meter) is

$$
\lambda(2)=6(2)=12 .
$$

If $x=3 \mathrm{~m}$, then the density (in kilograms per meter) is

$$
\lambda(3)=6(3)=18
$$

Notice that the density increases linearly with x, so the density will be highest at the right end of the rod and lowest at the left end of the rod.

